MINI-GRID IN THE CHINO BASIN

Prepared for: Renewables Transmission Planning Workshop September 14, 2004

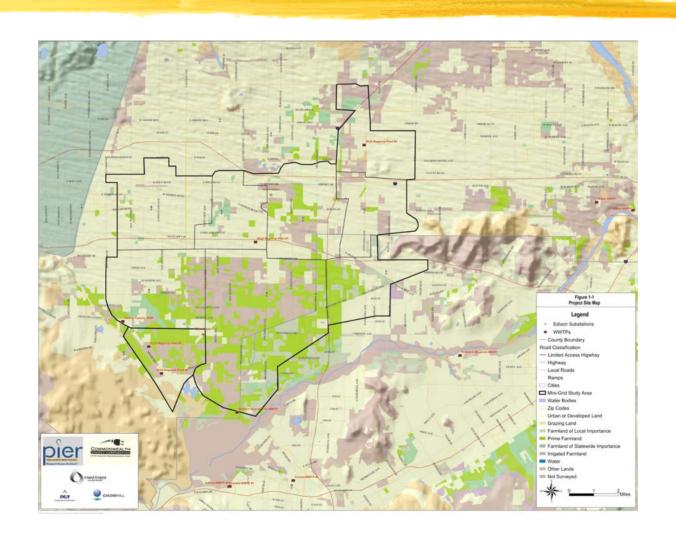
Presented by:
Hank Zaininger
Zaininger Engineering Co., Inc.
9959 Granite Crest Ct
Granite Bay, CA 95746

Hzaininger@aol.com; www.zeco-inc.com

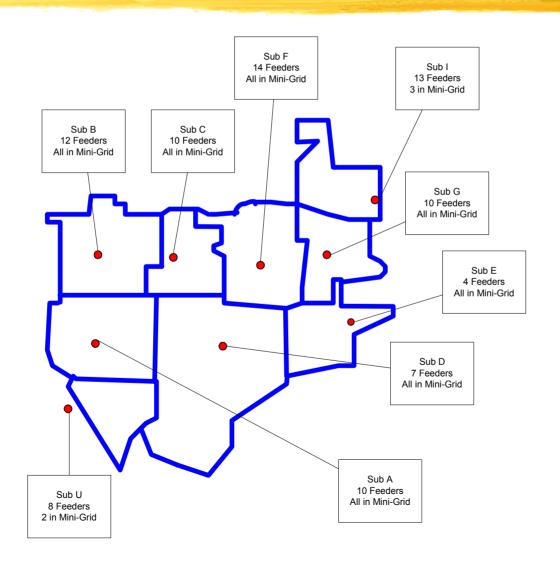
Mini-Grid Presentation Overview

- **# Mini-Grid Project Approach**
 - Mini-grid model development
 - Expected Biogas and BI-PV penetration
- **# Mini-Grid Project Results**

 - Potential T&D value
- # Commonwealth PIER Renewable Energy Program
 - Part of Task 1.1
 - Commonwealth Energy team Commonwealth Energy, ITRON, CH2MHILL, REDI, ZECO
 - www.pierminigrid.org

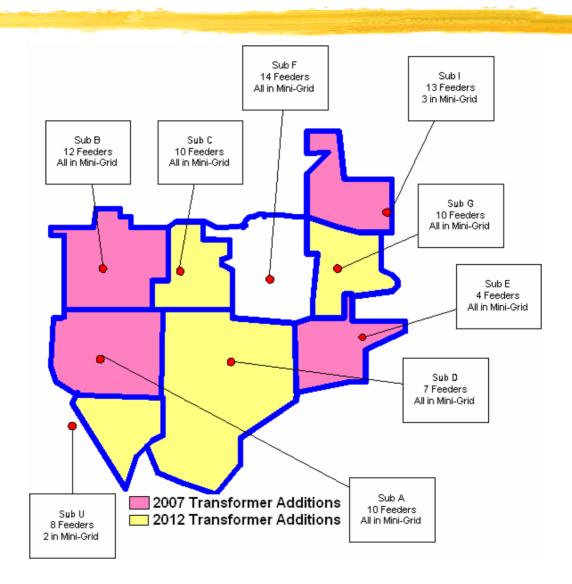

Mini-Grid Power Flow Study Scope

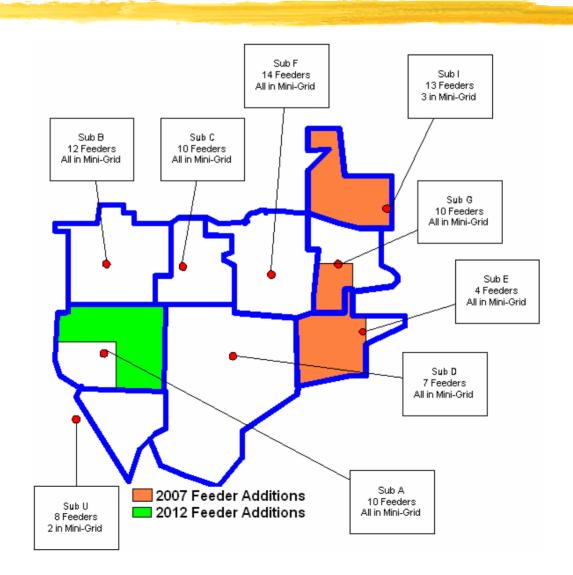
- #Area 12mi x 11 Mi area in Chino Basin
- ****** Renewables Studied
 - Non-residential BI-PV
 - □ Dairy Waste and Waste Water Biogas
 - Landfill Bioreactor Biogas
- #Expected, High and Low Penetration in 2007 and 2012
- # Perform Power Flow Analysis to Determine Potential Local T&D Impacts & Value


Mini-Grid T&D Data Collection & Model Development

- # Final area 12mi x 11 Mi area in Chino Basin
- ## Obtain local SCE 66/12 kV substation and 12 kV feeder configuration, ratings, conductor size, projected peak Year 2003 substation and feeder loads from SCE
- # Develop representative electrical parameters
- # Lay out Chino mini-grid electrical database
- # Add local 66kV Subtransmission configuration electrical data, local generation data and interconnection point
- # Insert local mini-grid model in WECC transmission PSLF load flow case

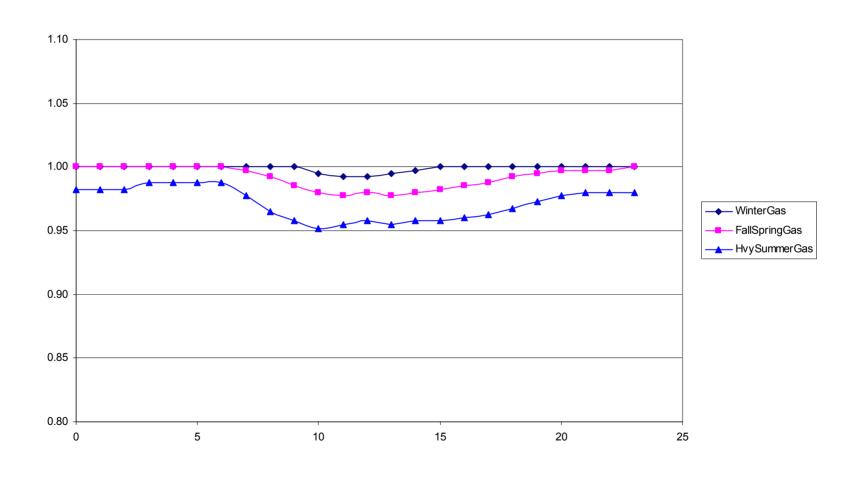
Mini-Grid Location

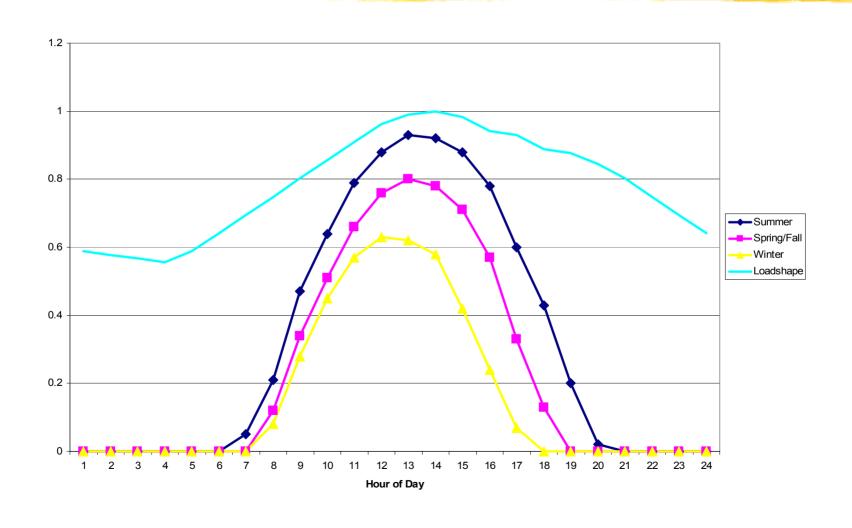

Mini-Grid Overview


Mini-Grid T&D Model

- #9 66/12 kV Substations
- ₩72 12 kV feeders
- #Mini-grid 2003 peak load about 565 MVA
- **Expand to 2007 assuming peak load growth of 3%/yr.**
- ****And from 2007 to 2012 at 1.7%/yr.**
- ****Add transformer and feeder capacity as needed**
- # Determine appropriate light load case

Transformer Additions


Feeder Additions


Expected, High and Low Renewable Penetration

		2007			2012		
	BI-PV (MW)	Biogas (MW)	Total (MW)	BI-PV (MW)	Biogas (MW)	Total (MW)	
Penetration Scenari	0						
Expected	3.8	6.2	10.0	19.5	8.3	27.8	
High	17.7	11.7	29.4	39.0	15.1	54.1	
Low	1.4	4.8	6.2	2.1	5.4	7.5	
Mini-Grid Peak Load	d		621			672	

Seasonal Biogas Output Profile

Seasonal Bi-PV Output Profile

DG Distribution System Impacts

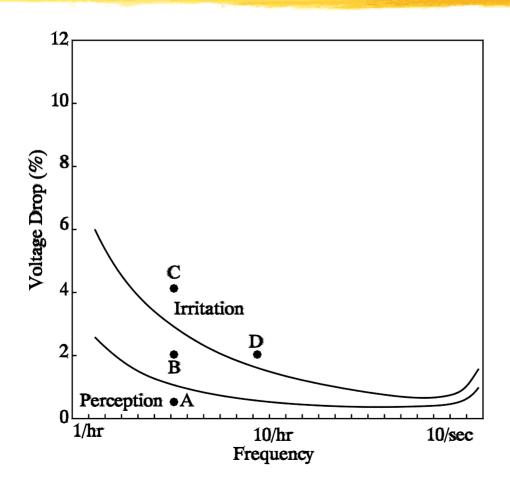
- **#**Site-Specific or Location-Specific
- # Power Flow Reduction
- **#Loss Reduction**
- **XVoltage Regulation**
- **#** Reliability
- **#** Flicker
- ****** Reverse Power Flow
- **#**Stability
- **Short Circuit Duty**
- **# Relaying**

DG Transmission System Impacts

- **** Network Systems**
- **#Location-Specific**
- **#Power Flows**
- **#Losses**
- **XVoltage**
- **#**Stability
- ****Need Large DG Penetration to Quantify**

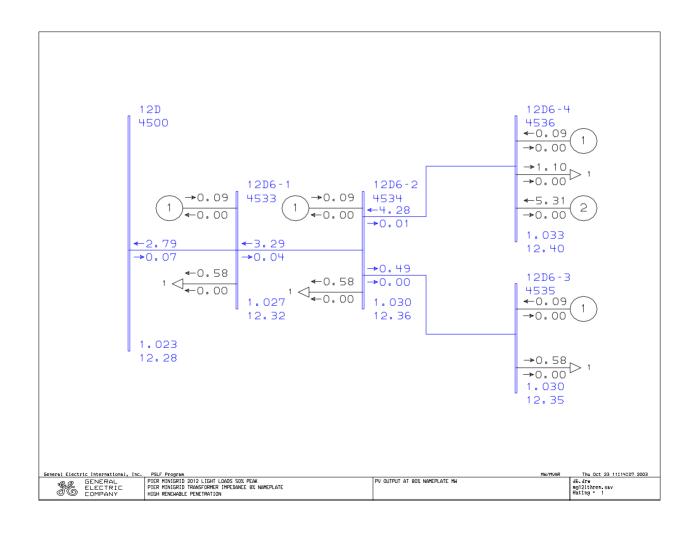
Potential Transformer MVA Reduction 2007 Peak

Sub	MVA	MVA	MVA Reduction			
Bank	Rating	BaseCase	Expected	High	Low	
Α	117	90.2	0.3	1.8	0.1	
В	138	103.8	0.4	2.1	0.2	
С	89	87.1	0.6	2.8	0.2	
D	56	53.6	1.2	5.3	0.7	
E	71	38.7	0.2	1.1	0.1	
F	138	124.3	6.2	11.0	4.7	
G	94	90.5	0.6	2.9	0.2	
U	70	64.8	0.2	1.3	0.0	
I	165	130.3	0.4	1.3	0.2	


Potential Transformer MVA Reduction 2012 Peak

Sub	MVA	MVA	MVA Reduction			
Bank	Rating	BaseCase	Expected	High	Low	
Α	117	97.1	2.0	4.0	0.2	
В	138	109.6	2.3	4.5	0.2	
С	125	94.6	3.0	6.1	0.3	
D	92	58.3	2.8	7.4	1.1	
E	71	42.3	1.3	2.5	0.2	
F	138	135.7	10.9	17.8	4.9	
G	130	98.4	3.2	6.5	0.4	
U	106	70.4	0.7	1.9	0.1	
I	165	142.0	1.7	3.5	0.5	

Potential Mini-Grid Loss Reductions


	Base Cas	e Bus Load	Renewable Penetration		
	Mini-Grid	Mini-Grid	Loss Reduction (MW)		
Case	Load (MW)	Losses (MW)	Expected	High	Low
2007 Peak	621	17.81	0.41	1.23	0.24
2007 Light	311	4.67	0.16	0.47	0.10
2012 Peak	672	20.69	1.39	2.54	0.36
2012 Light	336	5.34	0.53	0.92	0.15

Potential Flicker

Voltage Flicker Curve

Example Reverse Power Flow

Identifying and Determining DG Value

- ****Who Gets Benefit?**
- ****Who Gets Cost?**
- **#Who Pays Benefit?**
- #Generation Services Competitive Price Based
- **#T&D** Services Regulated Cost Based
- **#Benefits are Site-Specific and Utility- Specific**

Distribution Facility Cost Estimates

	Total	Annual
	CI	Fix Chg
2007 Distribution Additions	(\$1000)	(\$1000)
4- 28 MVA Transformers	5,965	895
2-4 mi Underground Feeders	4,727	709
1-3 mi Underground Feeder	1,773	266
1-3.5 mi Underground Feeder	2,068	310
1-1.3 mi Overhead Feeder	329	49
	Total	Annual
	CI	Fix Chg
2012 Distribution Additions	(\$1000)	(\$1000)
4- 28 MVA Transformers	6,915	1,037
2-4 mi Underground Feeders	5,480	822

Potential Distribution Facility Deferral Benefits

Present Worth of Revenue Requirements (\$1000)						
	Expe	ected	High		Low	
Year	Full	90%	Full	90%	Full	90%
2007	0	0	1,018	0	0	0
2012	2,027	1,709	4,257	3,835	0	0
Mini-Grid Renewables Penetration MW						
2007	1	0	2	29.4		.2
2012	27	7.8	54.1		7	.5

Potential T&D Benefits - \$/kW

Potential Year 2007 Benefit in 2007 Dollars	High
Defer Sub E Transformer Addition	130
Defer 2-4 mi.Sub E Feeder Additions	560
Defer 1-3 mi.Sub G Feeder Addition	200
Defer 1-3.5 mi.Sub I Feeder Addition	160
Potential Year 2012 Benefit in 2012 Dollars	
Defer Sub C Transformer Addition	100
Defer Sub D Transformer Addition	130
Defer Sub G Transformer Addition	95
Defer Sub U Transformer Addition	90
Defer 2-4 mi.Sub A Feeder Additions	820

Next Steps

- **#High DG penetration**
- # Detailed interconnection study
 - Relaying requirements
 - Integrated voltage control
 - Reactive power scheduling
- ★ Dynamic study

 - Ride through capability of DG